## Impact of Human Milk on the Neurodevelopment of the Preterm Infant

Richard J. Schanler, MD, FAAP Cohen Children's Medical Center Zucker School of Medicine at Hofstra/Northwell New Hyde Park, New York November 17, 2018

## AAP Recommendations on Breastfeeding Management for Preterm Infants

- > All preterm infants **should** receive human milk.
  - Human milk should be fortified, with protein, minerals, and vitamins to ensure optimal nutrient intake for infants weighing <1500 g at birth. 34 weeks</li>
  - Pasteurized donor human milk, appropriately fortified, should be used if mother's own milk is unavailable or its use is contraindicated.



- > Why human milk for preterm infants?
- Review neurodevelopmental outcomes in preterm infants fed human milk.



# Why Human Milk?

- Lower morbidity from infection-related events
  - Necrotizing enterocolitis
  - Sepsis
  - Urinary tract infection
- Benefits persist beyond NICU stay

# Why Human Milk?

| OR    | (CI 95%)                              |
|-------|---------------------------------------|
|       |                                       |
| 2.59  | (1.33-5.04)                           |
| 1.61  | (1.15-2.25)                           |
|       |                                       |
| 12.86 | (2.84 - 58.29)                        |
| 3.59  | (1.68-7.63)                           |
|       |                                       |
| 1.80  | (1.05 - 3.11)                         |
| 1.34  | (1.02-1.76)                           |
|       | 2.59<br>1.61<br>12.86<br>3.59<br>1.80 |

#### **Referent = Exclusive breastmilk feeding**

Controlled for ethnicity, steroids, inborn, gender, multiples, gestational age, enteral feeding, weight z-score at birth and discharge

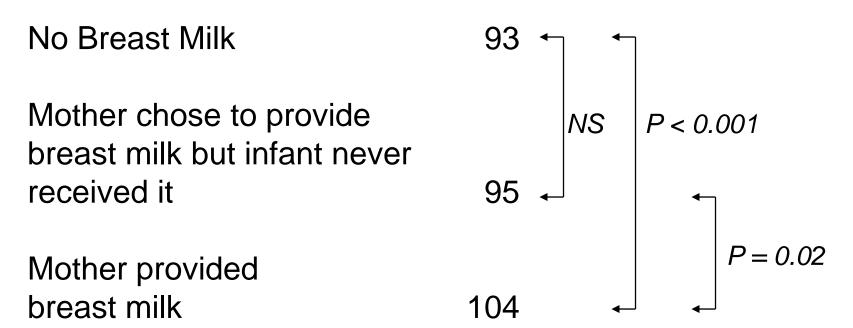
Spiegler, *J Pediatr* 2016;169: 76-80

# Neurodevelopmental Outcomes

Vision
Mental Scales
Motor Scales
Behavior
Hearing

Association between human milk diet and neurodevelopmental outcome in premature infants is complicated...

## **Considerations for Premature Infants**


> Diet

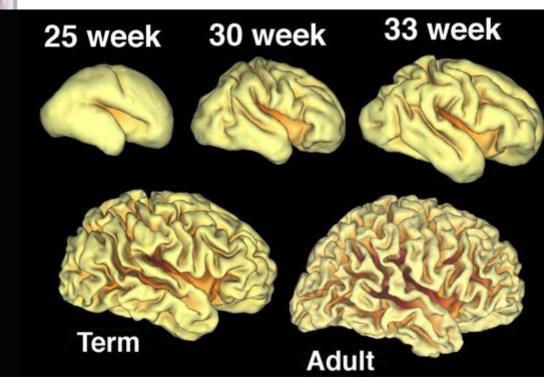
- Mother's own milk
- Donor human milk (pasteurized)
- Episodic use of formula
- Morbidity of premature infants
  - Chronic lung disease
  - Sepsis
  - Necrotizing enterocolitis
  - Retinopathy of prematurity
  - Co-morbidities
- Growth of premature infants

- Rapidity of brain growth
- Decision to provide human milk
- Maternal-infant interactions
  - bonding
  - attachment
- Non-homogeneity of human milk composition
- > Taste, odor of human milk
- > Unknown

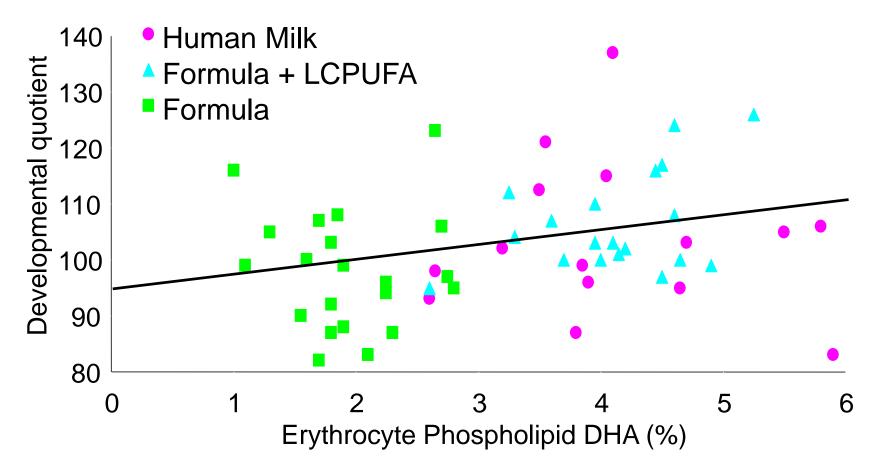
## **Breast Milk and Subsequent Intellectual Performance in Premature Infants at 8 Y**

Mean IQ Score




Lucas, Lancet 1992;339:261

## **Nutrients/Factors with Effects on Brain**


- Macronutrients
  - Protein
    - Protein quality
  - Energy
    - Fat (LC-PUFA: DHA)
    - Glucose
- Micronutrients
  - Zinc
  - Selenium
  - Iodine (Thyroid)
  - Iron

- > Vitamins
  - B vitamins (B6, B12)
  - Vitamin A
  - Vitamin K
  - **G** Folate
- Human milk components
  - Oligosaccharides
  - Microbiome
  - Cholesterol
  - Nucleotides
  - Antioxidants
  - Taurine
  - Choline
  - Growth factors

Ensure optimal somatic growth to effect brain growth and development



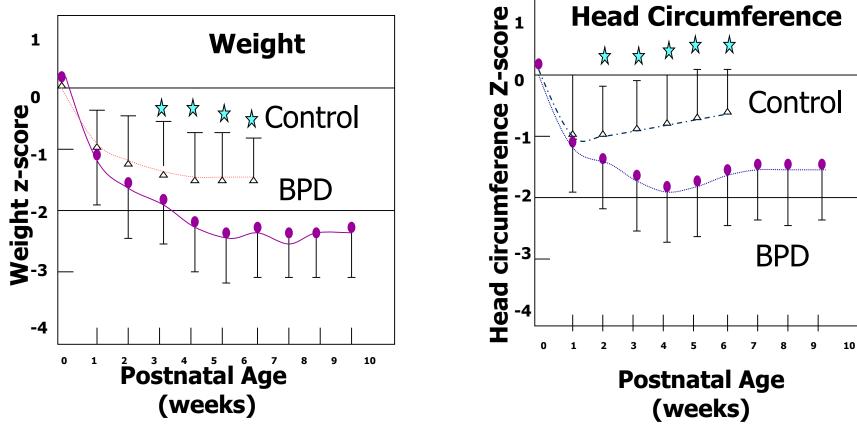
## DHA and DQ @ 4 mo



Agostoni, Lancet 1995; 346:638

## **Early Nutrition Mediates the Influence of Severity of Illness**

#### **Energy Intake by Degree of Critical Illness**


| Energy                            | Critically III (AGA Infants) |                              |         |  |  |
|-----------------------------------|------------------------------|------------------------------|---------|--|--|
| Intake<br>(kcal/kg/d)<br>Days 1-7 | Less<br>(MV < 7d)<br>(n=499) | More<br>(MV d1-7)<br>(n=464) | p-value |  |  |
| Parenteral                        | 46.1 (12.5)                  | 41.1 (12.5)                  | <.0001  |  |  |
| Enteral                           | 3, 5.8 (8.1)                 | 0, 1.6 (3.5)                 | < .0001 |  |  |
| Total Energy                      | 52.0 (13.8)                  | 42.7 (13.1)                  | <.0001  |  |  |

#### **Outcome Variables by Degree of Critical Illness**

| Variable                         | Less<br>Critically III  | More<br>Critically III   | p-value |
|----------------------------------|-------------------------|--------------------------|---------|
| BPD [n(%)]<br>Moderate<br>Severe | 109 (23.1)<br>51 (10.8) | 210 (38.6)<br>170 (31.3) | <.0001  |
| Duration of PPV (d)              | 13.5 (16.6)             | 40.9 (26.6)              | <.0001  |
| Duration of $O_2$ (d)            | 46.7 (33.1)             | 74.6 (34.5)              | <.0001  |
| PN Steroids [n(%)]               | 88 (17.6)               | 331 (51.2)               | <.0001  |
| Late onset-sepsis                | 187 (37.5)              | 306 (47.4)               | .0008   |
| Death [n(%)]                     | 35 (7)                  | 123 (19)                 | <.0001  |
| Length of stay (d)               | 82.6 (34.9)             | 102.6 (57.9)             | <.0001  |
| Wt @ 36 wks PMA                  | 1926 (312)              | 1781 (340)               | <.0001  |
| MDI < 70 [n(%)]                  | 83 (21.3)               | 180 (42.7)               | <.0001  |
| PDI < 70 [n(%)]                  | 34 (8.9)                | 117 (27.9)               | <.0001  |
| Mod/Sev CP [n(%)]                | 12 (2.5)                | 41 (9.1)                 | 0.0002  |

Extremely preterm infants Ehrenkranz Pediatr Res 2011

## Effect of Bronchopulmonary Dysplasia (BPD) on Growth



deRegnier et al, 1996

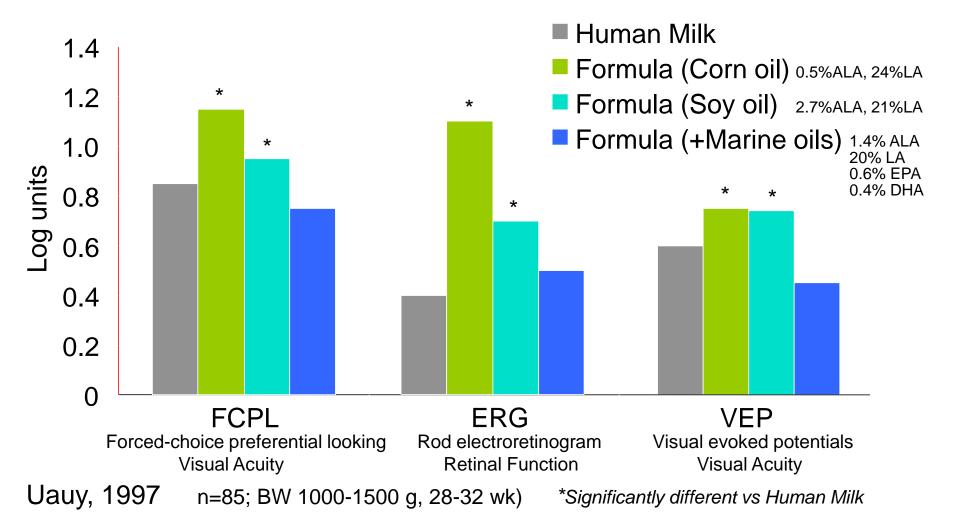
## IQ at School Age in Preterm Infants with and without BPD vs Term Infants

| First Author and                    | Preterm or          | Preterm or VLBW | Full-Term Controls |
|-------------------------------------|---------------------|-----------------|--------------------|
| Publication Year                    | VLBW with BPD       | Without BPD     |                    |
| Vohr et al, <sup>47</sup> 1991      | n = 13              | n = 15          | n = 15             |
|                                     | 93 ± 21             | 94 ± 13         | 108 ± 11           |
| Robertson et al, <sup>44</sup> 1992 | n = 21 <sup>a</sup> | n = 21          | n = 21             |
|                                     | 88 ± 21             | 97 ± 20         | 115 ± 10           |
| Hughes et al, <sup>45</sup> 1999    | n = 95              | n = 311         | n = 188            |
|                                     | 86 ± 18             | 96 ± 18         | 100 ± 17           |
| Short et al, <sup>41</sup> 2003     | n = 98              | n = 75          | n = 99             |
|                                     | 87 ± 20             | 95 ± 16         | 102 ± 15           |

<sup>a</sup> Born less than 32 weeks gestation with oxygen dependence at 36 weeks postmenstrual age.

Full scale IQ testing

## Human Milk Reduces ROP


Descriptive studies suggest less retinopathy of prematurity (ROP) in human milk-fed premature infants

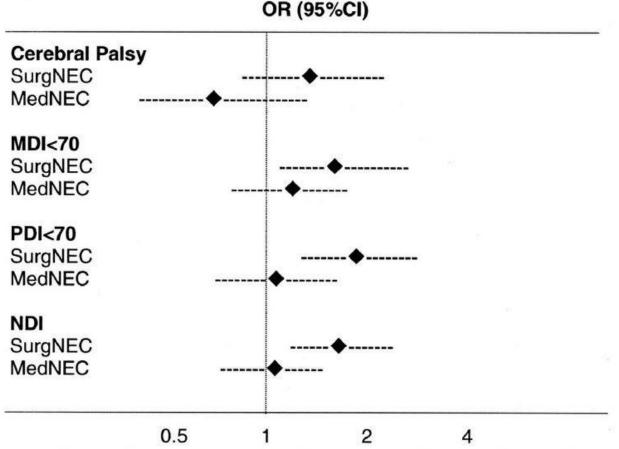
2 RCTs at 11 Italian NICUs: 314 infants exclusively HM feeding vs. 184 formula Overall ROP less (3.5% vs 15.8%) Threshold ROP (needing treatment) less (1.3% vs. 12.3%)

## With multivariate regression, human milk was protective against ROP, p < 0.01

Hylander, J Perinatol 2001; Schanler Pediatrics 2005; Okamoto, Pediatr Int 2007, Manzoni, Early Human Devel 2013

## Effect of Diet on Visual Function in Premature Infants



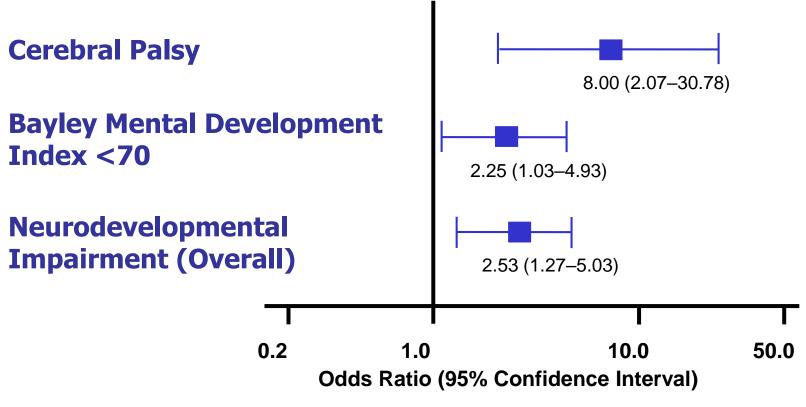

## **Late Complications of NEC**

- Gastrointestinal
  - Stricture
  - Short bowel syndrome
  - Cholestasis, liver cirrhosis and liver failure
- Postnatal growth delay
  - Surgical > Medical NEC
- Hospital costs

#### > Neurodevelopmental disadvantages

Hintz et al, Pediatrics 2005; 115:696 Shah et al, J Pediatr 2008; 153:170 Johnson et al, J Pediatr 2013: 162:243-9

# NeurodevelopmentalOutcomesOutcomesin PrematureSurgNECMedNECInfantswith NECMDI<70</td>SurgNECMedNEC




Adjusted odds ratios (ORs) for CP, MDI less than 70, PDI less than 70, and NDI in Surgical NEC and Medical NEC compared with No NEC infants. (*From* Hintz SR, Kendrick DE, Stoll BJ, et al. Neurodevelopmental and growth outcomes of extremely low birth weight infants after necrotizing enterocolitis. Pediatrics 2005;115(3):696–703.)

## Body growth is a major predictor of neurodevelopmental outcome

## Weight Gain Affects Outcome

In-hospital growth: **12.0** vs **21.2** g/kg/day



Ehrenkranz RA, et al. *Pediatrics* 2006;117:1253-61.

## Human milk and neurodevelopmental outcomes



## Predictors of Neurodevelopmental Outcome

| Human milk feeding              | 3.799   | 0.05   |
|---------------------------------|---------|--------|
| IVH/PVL                         | -23.307 | <0.001 |
| NEC                             | -5.067  | 0.246  |
| Sepsis                          | -1.124  | 0.667  |
| Mechanical ventilation          | -3.831  | 0.108  |
| Gestational age                 | 0.810   | 0.069  |
| Small-for-gestational age       | 1.432   | 0.546  |
| Extrauterine growth restriction | -1.408  | 0.453  |
| Socioeconomic status            | 3.284   | <0.001 |

24 month follow-up; n=316

PLOS ONE 10 (1): e0116552 1/13/2016 Giberton D, Corvaglia L, et al. Bologna, IT

## **Effects in Human Milk-Fed Children**

- Greater white matter development
- Increased cortical thickness of parietal regions
- > Higher scores for receptive language
- > Higher scores for vision reception

Deoni, Neuroimage 2013: 82:77-86 Kafouri, Int J Epidemiol 2013; 42:150-9 Isaacs, Pediatr Res 2010; 67:357-62

## **Maternal-Infant Interaction**

#### > N=86 <1750 g infants 1996-9

| Feldman & 86 infants<br>Eidelman, <1750 g<br>2003 | At          | 6m  | Substantial | Intermediate | Minimal   | Ρ    |
|---------------------------------------------------|-------------|-----|-------------|--------------|-----------|------|
|                                                   | discharge M | MDI | 94.2 ± 9    | 91.7 ± 7     | 90.5 ± 8  | <.05 |
|                                                   | and 6 mo    | PDI | 85.8 ± 11   | 78.6 ± 13    | 78.0 ± 12 | <.01 |

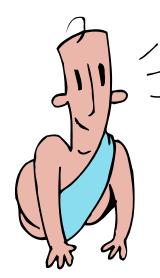
- Substantial HM group:
- > Maternal affectionate touch assoc with higher cognition
- Infants more alert

## Slower Weight Gain but Higher MDI & PDI

RCT of formulas fed as supplements to Human Milk vs Formula only. Formula-fed (PFF) infants had greater weight gain.

Positive assoc between **HM duration** and MDI at 12 months after adjustment for HOME and maternal IQ (p = 0.03).

Infants with chronic lung disease fed > 50% HM had 11 point advantage in MDI at 12 months compared with PFF group.


N=463 750-1800 g 1996-8 O'Connor 2003

## Human Milk and Subsequent IQ in Preterm Infants at 8 y

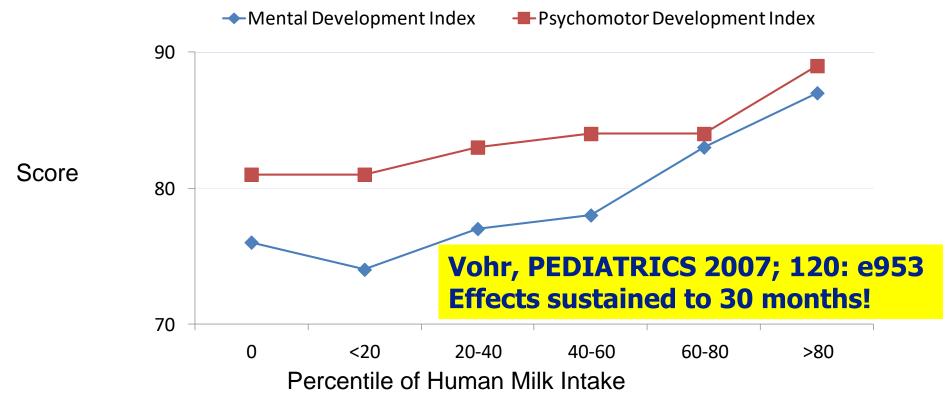
Significant factors affecting IQ

Social Class- 3.5/classMother's Education+ 2.0/groupFemale Gender+ 4.2Mechanical Ventilation- 2.6/weekReceipt of Human Milk+ 8.3 IQ points

Lucas, Lancet 1992;339:261



## Human Milk: IQ, Brain Size, White Matter Development


- Subset of 8 yo preterm study
- Follow-up to adolescence, 13-19 y
- Positive correlation:

### %Expressed Human Milk and .....

- □ Verbal IQ r= 0.3, p ≤ 0.05
- □ White matter volume r= 0.5 0.7, p < 0.001

Covariates: maternal education, class, test age, gestational age Isaacs, Pediatr Res 67:357-362, 2010

## Dose of Human Milk in NICU & Outcomes at 18 mos



Vohr, PEDIATRICS 2006; 118: e115 Bayley Scales of Infant Development II MDI, Mental Development Index PDI, Psychomotor Development Index N=775 Human milk (75%) 260 No Human milk (25%), = 1,035 infant Birth weight 800 g Gestational age 27 wk Pattern remains even after excluding any infant DC on human milk Confounders included: maternal age, education, marital status, race/ethnicity

## Dose of Human Milk in NICU & Outcomes at 18 mos

For every 10 mL/kg/d increase in HM ingestion: MDI increased by 0.53 points PDI increased by 0.63 points Behavior Rating Scale score increased by 0.82 points Likelihood of rehospitalization decreased by 6%

This small increase in scores reduces **economic burden** by decreasing the number of ELBW children who require special education services.

The **societal implications** of a five-point difference (one-third of an standard deviation) in IQ are substantial.

Vohr, PEDIATRICS 2006; 118: e115 Bayley Scales of Infant Development II MDI, Mental Development Index PDI, Psychomotor Development Index N=775 Human milk (75%) 260 No Human milk (25%), = 1,035 infants Birth weight 800 g Gestational age 27 wk

## Neurodevelopment at 7 y

#### Predominant human milk diet for 28 days (>50% HM)

#### < 30 week gestation infants

Number of days infants received > 50% HM:

@ Term age: MRI showed greater deep gray matter volume0.15 cc/day, 95% CI = 0.05 to 0.25 cc/day

@7 years: significant outcomes
IQ 0.5 points/day (0.2 to 0.8)
Math 0.5 points/day (0.1 to 0.9)
Working memory 0.5 points/day (0.1 to 0.9)
Motor function 0.1 points/day (0.0 to 0.2)

Belfort, J Pediatr 2016;177:133-9

Premature infants are already at high risk for neurodevelopmental delay and abnormalities, any intervention that has the potential to increase cognitive ability, even if the effect is small, is a significant tool.

## **Putative mechanisms**

- Polyunsaturated fatty acids
- Direct stimulation of deep nuclear gray matter and hippocampus (working memory) and other areas
- Maternal infant bonding
- > Ghrelin and leptin re apetite regulation
- Antibodies and microbiome effects

## **Effects of Donor Human Milk**

| Bayley III score,<br>mean (SD) | Mother's Own<br>Milk | Preterm Formula | DBM         | P*                              | P**                  |
|--------------------------------|----------------------|-----------------|-------------|---------------------------------|----------------------|
| 1-y corrected age              | n = 15               | n = 13          | n = 18      |                                 |                      |
| Cognition                      | 93.0 (9.6)           | 97.1 (11.8)     | 83.1 (11.6) | 0.003 <u>‡</u> , <mark>§</mark> | 0.005 <mark>§</mark> |
| Language                       | 86.1 (14.7)          | 91.1 (17.5)     | 74.1 (8.8)  | 0.02 <u>‡</u> , <mark>§</mark>  | 0.04 <mark>§</mark>  |
| Motor                          | 91.1 (9.9)           | 93.1 (7.8)      | 82.4 (16.5) | 0.05                            | 0.09                 |
| 2-y corrected age              | n = 18               | n = 13          | n = 16      |                                 |                      |
| Cognition                      | 93.9 (12.2)          | 94.7 (15.1)     | 83.1 (13.9) | 0.04 <u>‡</u> , <mark>§</mark>  | 0.03 <mark>§</mark>  |
| Language                       | 91.9 (17.6)          | 88.7 (17.3)     | 79.3 (9.2)  | 0.06                            | 0.09                 |
| Motor                          | 89.0 (13.4)          | 92.4 (15.4)     | 80.5 (12.5) | 0.06                            | 0.16                 |

 $P^{**}$  based on 1-way ANCOVA adjusted for multiples, bronchopulmonary dysplasia, and social work involvement. Post hoc pairwise comparisons of donor breastmilk vs mother's own milk; P < 0.05.

§ Post hoc pairwise comparisons of donor breastmilk vs preterm formula; P < 0.05.

Madore et al, Clin Therapeutics 2017; 39: 1210-20

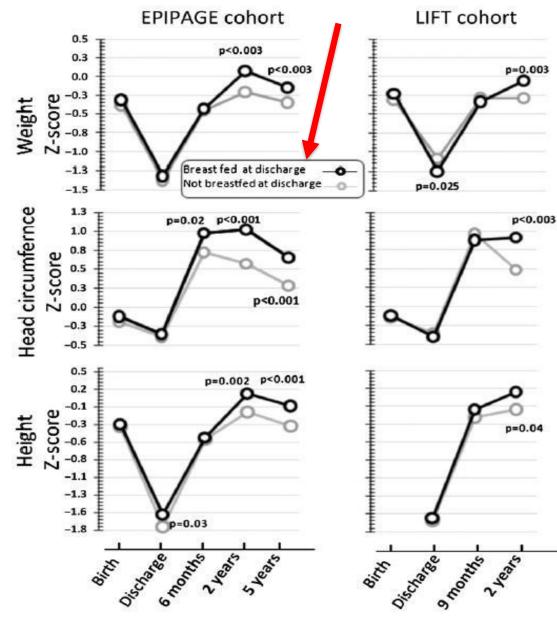
## **Effects of Donor Human Milk**

Pasteurized donor milk vs preterm formula used as supplements to fortified mother's own milk, n=363 infants, 27.7 wks, 996 g.

|                                                   | DM    | PF    |                     |   |
|---------------------------------------------------|-------|-------|---------------------|---|
| Necrotizing enterocolitis<br>Stage <u>&gt;</u> II | 1.7%  | 6.6%  | -4.9 (-9.0 to -0.9) | * |
| Cognitive<br>Neuroimpairment Score<br>< 85        | 27.2% | 16.2% | 10.6 (1.5 to 19.6)  | * |

# Albert Einstein was breastfed for 3 to 4 years!

## Breastfeeding, Early Weight Gain, Neurodevelopment


Follow-up studies of 2 French cohorts infants <32 weeks gestation

EPIPAGE 1997 (France): 19% BF at DC (n=1462) LIFT 2003-8 (LOIRE Infant Follow-Up Team): 16% BF at DC (n=1463)

**Propensity Score**: maternal age + BMI + socioeconomic status + educational attainment + other kids + infant characteristics and morbidity.

Rozé J-C, Darmaun D, Boquien C-Y, Flamant C, Picaud J-C, Savagner C, Claris O, Lapillonne A, Mitanchez D, Branger B, Simeoni U, Kaminski M, Ancel P-Y.

BMJ Open 2012;2:e000834



Weight, head circumference and height Z-scores at discharge, 6, 9 mo and 2 y corrected age (EPIPAGE and LIFT cohorts) and at 5 y (EPIPAGE cohort).

At DC: BF slower NICU growth when adjusted for GA, gender, BW, propensity score

#### At Follow-Up:

BF at DC had greater growth measures

BMJ Open 2012;2:e000834

#### IMPROVED Neurodevelopmental Outcome at 2-5 y in Preterm Infants Breastfed at Discharge

- NORMAL Neurodevelopment (no adjustments)
  - □ EPIPAGE (n=1462) 2.3 x *p*=0.001
  - □ LIFT (n=1463) 1.9 x *p*=0.001
- > Adjusted for gestation, birth weight, gender, propensity score
  - □ EPIPAGE (n=1462) 1.5 x *p*=0.008
  - □ LIFT (n=1463) 1.6 x *p*=0.005

~ < 32 wks survived to DC; EPIPAGE 1997 (France): 19% BF at DC;</li>
 LIFT 2003-8 (LOIRE Infant Follow-Up Team): 16% BF at DC
 Propensity Score: sum of mom age, BMI, socioeconomic status, educational attainment, other kids, pregnancy; infant characteristics and morbidity.
 Roze et al. BMJ Open 2012;2:e000834

## **Confounding Factors Affect IQ**

#### > Maternal/paternal characteristics

- Age
- Marital status
- Race
- Education
- Socioeconomic status
- Height
- Intelligence
- Attitude
- Breadth of experience
- Parenting skills
- Interest in education
- Working
- Tobacco smoking
- Choice of breastfeeding

#### > Infant characteristics

- Duration of feeding
- Feeding difficulties
- Age at weaning
- Bonding
- Family size
- "Constitutional difficulties"
- Childhood experiences, ills
- Birth weight
- Gestational age
- Birth rank
- Gender
- Home environment
- Family size

# Strategies

## **Effects of Human Milk Fortification**

- > 600 infants; randomized\*
- Growth
  - Weight gain (g/kg/d)
  - Length (cm/wk)
  - Head circumference (cm/wk)
- Bone mineral content (mg/cm)
- Nitrogen balance (mg/kg/d)
- BUN (mg/dL)
- Relative Risk
  - **Feeding intolerance**
  - Necrotizing enterocolitis
  - Death

Weighted Mean Difference

- + 3.6 [2.7;4.6]
- + 0.12 [0.07; 0.18]
- + 0.12 [0.07; 0.16]
- + 8.3 [3.8; 12.8]
- + 66 [35; 97]
- + 16 [8; 24]

Relative Risk

- 2.9 [0.6; 13] NS
- 1.3 [0.7; 2.5] NS
- 1.5 [0.7; 3.3] NS

Kuschel CA & Harding JE 2005 The Cochrane Library \*Some comparisons with partial supplements

## Growth

- Ensure optimal intake ~160 ml/kg/day fortified human milk
- Variable composition of human milk
- > Fortified **donor milk** needs proactive attention:
  - protein supplement (added protein ~1.3 g/day)
  - energy supplement (vegetable oil 1 ml bid = +16 kcal/day)
  - human milk-derived HMF with ability to increase protein and energy as well as minerals
- > Follow **rate** of weight gain and **growth curve** to prevent drop  $< 10^{\text{th}}$ ile
- Increase supplementation as needed based on growth rate and percentiles
- > Encourage human milk fortification after discharge:
  - at least "40 weeks" corrected age, or 12 weeks post-discharge

## Conclusions

Human milk diet is associated with improved neurodevelopmental outcomes Adjust diet to ensure growth and to meet nutrient needs::FORTIFIERS Milk components or their effects on disease accounts for enhanced outcomes Human milk diet is "Required" for THE premature infants