Outcome of Kangaroo Mother Care in Teaching Hospital in Rural India

-

*DR RAJIB CHATTERJEE

MBBS, DCH, MD (Pediatrics)

DR GAURAV GARG

MBBS, MD (Pediatrics)

Department of Pediatrics Pravara Institute Of Medical Sciences Loni, Ahmednagar, Maharashtra

CREATION OF KMC

1978 - Dr Edgar Ray Sanabria **& Dr Hector Martinez** pediatricians from MCH, Colombia created Kangaroo Mother Care as a way to humanize high technology & also provide comprehensive low cost care for the LBW infants

KMC – MULTIMODAL STIMULATION

S.

Satisfies all five senses of the baby

Touch: Baby feels warmth of the mother through skin to skin contact

- Olfaction: smells mother's odour
- Taste: sucks on breast
- Vision: has eye contact with mother Hearing: listens to mother's voice

JOEY SUCKLING IN MOTHER'S POUCH

EARLY KMC: BREAST CRAWL i.e. NEONATE SUCKLING WITHIN MINUTES OF BIRTH

INTRODUCTION

SCIENTIFIC BASIS OF KMC

- Skin to skin contact and carry pattern of care, reflected in KMC
- Development of Amygdala prefrontal - orbital tract
- Healthy right brain development
- Subsequent mental health
- Better perceptual cognitive
- Better motor development in later infancy

Kirsten F G, Bergman NJ,Hann M F[4]: KMC in the nursery. Pediatr Clin North Am 2001;48:443 -452
 Rosenblum LA, Andrews MW[5]: Influences of environmental demand on maternal behavior and infant development. Acta Pediatrica Suppl 1994;397:3-8.
 Ruiz Pelaez JG, Charpak N, Cuervo LG.[6]: KMC, an Example to follow from developing countries. BMJ 2004; 329(7475): 1179-1181

INTRODUCTION

CONVENTIONAL CARE

KANGAROO MOTHER CARE

- INCUBATOR
- PARENTERAL THERAPY
- VENTILATOR THERAPY
- CONTACT, REMOTE DELAYED, INTERMITTENT, UNATTENDED DISTRESSED

- SKIN TO SKIN CONTACT –
 EARLY & PROLONGED
- EARLY EXCLUSIVE BREAST MILK
- APNEA PREVENTION
- MULTIMODAL
 STIMULATION

Neonatal Mortality Rate in India, 1990-2010

Source: Level & Trends in Child Mortality. Report 2011. Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA, UNPD).

MATERIALS

PERIOD: June 2007 to May 2009 INCLUSION CRITERIA

Intramural singleton neonates (<2000gms) were enrolled in KMC after

- stabilization i.e. Apgar score of 7 at 5 minutes
- with stable cardiopulmonary status and on EBM(NGT) or Breast feed at Birth / 24-72 hrs of age / after 72 hrs of age and studied till discharge with advice to continue at home till follow up at CDOB.
 EXCLUSION CRITERIA
- Neonates > 2000 gms
- Neonates with life threatening congenital anomalies
- Neonates with Apgar < 7 at 5 minutes
- Neonates of multiple gestation

A TOTAL OF 287 NEONATES SELECTED FOR STUDY WERE ENROLLED FOR KMC, OF WHICH THOSE WHO SHOWED DISCOMFORT WERE GIVEN CMC FORMED THE CONTROL GROUP.

METHODS

- A printed questionnaire to elicit maternal history in detail while sensitizing the mother for KMC
- Printed pro forma for recording thorough clinical examination of the newborn.
- Components of KMC
- Kangaroo feeding policy
- Daily weight monitoring
- Kangaroo discharge and follow up policies
- KMC Ward
- Follow up as surrogate for morbidity / mortality

KANGAROO POSITION

INADEQUATE WEIGHT_GAIN (<15-20 gm/kg/d)

RESULTS

Live born babies birth weight ≤ 2500gms

Total no. o	f live births	Total No. of LBW		
N =	5036	N =1780 (35.34%)		
Male	Female	Male	Female	
2678	2358	922	858	
(53.18%)	(46.82%)	(51.80%)	(48.20%)	

Sex distribution of babies having

birth weight ≤ 2000gms:

Total no. of live births N = 5036

No. of babies having birth weight \leq 2000gms, n = 1182 (23.47%)

No. of babies studied n = 287 (24.28%)

Male	Female
146 (50.87%)	141 (49.13%)

Weight distribution of KMC / CMC babies under study:

Weight	No. of babies						
in gms	KMC	СМС	Total				
≤ 1000	3 (1.63%)	0	3 (1.04%)				
1001-1500	68	8	76				
	(37.15%)	(7.69%)	(26.48%)				
1501-2000	112	96	208				
	(61.2%)	(92.3%)	(72.48%)				
Total	183	104	287				
	(63.76%)	(36.24%)	(100%)				

RESULTS

Gestational Age Distribution of neonates in KMC and CMC

GESTATIONAL		KMC		СМС			TOTAL
AGE (WKS)	Μ	F	Total	М	F	Total	
≥ 28 - 30	5	13	18	1	1	2	20
≥ 30 - 32	22	17	39	8	5	13	52
≥ 32 - 34	30	24	54	14	10	24	78
≥ 34 - 36	15	14	29	16	17	33	62
≥ 36 - 38	19	24	43	16	16	32	75
Total	91	92	183 (63.76%)	55	49	104 (36.24%)	287

Gestational Age Distribution of neonates in KMC and CMC

GESTATION	KMC	СМС
Preterm	140	72
Full term	43	32

RESULTS

Average weight gain (gms/kg/day)

CATEGORY	KMC		СМС		
Minimum Avg. wt gain (gms/kg/da	6		5		
Maximum Avg. wt gain (gms/kg/da	30			18	
Mean ± SD		17.64 ± 2.31		10.8	31± 1.02
Median		18.0			11.5
CATEGORY		≤ 1000	1001	-1500	1501-200
		1.0		~	_

Minimum Avg. wt gain (gms/kg/day)	10	5	5
Maximum Avg. wt gain (gms/kg/day)	26	30	30
Mean ± SD	17.75 ± 2.27	16.53 ± 1.85	16.43 ± 1.73
Median	18.0	17.5	17.5

Mean Avg. weight gain in KMC: 17.64 ± 2.31 gms/kg/day Mean Avg. weight gain in CMC: 10.81 ± 1.02 gms/kg/day

Applying Z test for difference between two sample means shows highly significant difference between mean values of Avg. weight gain in KMC and CMC (p< 0.01)

KANGAROO MOTHER CARE CHART

CONSTANT TEMPERATURE IN KMC

WEIGHT GAIN

Average weight gain

Study group KMC: 17.64 ± 2.31 g/kg/day

Control group CMC: 10.81 ± 1.02 g/kg/day

highly significant (p<0.01)

Cattaneo et al 1998[12]:study group: 21.3 g/day; control group:17.7 g/day Lincetto et al 2000[13]: 15.6 g/day Colonna et al 1990[14]: 12.8 g/day Aloke, Vani et al[15]: KMC 101.67 vs. CMC 36.6 g Ramnathan et al[3]: 15.9 ± 4.5 vs. 10.6 ± 4.5 g/day

INCIDENCE OF HYPOTHERMIA

Study group KMC: 48 of 183 Control group CMC: 41 of 104

study group < control group (p<0.05)

Cattaneo et al 1998[12]: KMC 10.8 vs. CMC 14.65 episodes/100 infants/day Priya et al 2004[17]: KMC 98.8°F was higher than CMC 98.3°F Kadam et al 2005[19]: KMC 10 of 44 ; CMC 21 of 45 hypothermia incidence K. Christensson et al[18]: skin temperature of full terms increases significantly in just 5 minutes KMC

INCIDENCE OF HYPOGLYCEMIA

Study group KMC: 45 of 183 Control group CMC: 32 of 104

study group < control group (p<0.05)

Aloke, Vani et al[15]: showed no incidence of symptomatic hypoglycemia in both the KMC and CMC groups.

INCIDENCE OF SEPSIS

Study group KMC: 25 of 183 Control group CMC: 16 of 104

study group < control group (p<0.01)

Charpak et al[7]: rate of infection similar in both groups but severity of septicemia differed, favoring the KMC group Dr. Susan Ludington[16]: immunity improved among LBW infants in KMC (especially preterms) thereby protecting them from infection Sloan et al[20]: during 6 months follow up KMC group had significantly low rate of infection compared to CMC group

INCIDENCE OF HYPOXIA

Study group KMC: 23 of 183 Control group CMC: 28 of 104

study group < control group (p<0.05)

Priya JJ et al 2004[17]: KMC 5.4 vs. CMC 9.5 frequency of episodes (p<0.05)

INCIDENCE OF APNEA

Study group KMC: 11 of 183 Control group CMC: 9 of 104

```
study group < control group
(p<0.05)
```


Priya JJ 2004[17]: KMC 0.43 vs. CMC 0.73 mean apneic spells, clinically significant Sloan et al [20]: similar results at Isidro Ayora Maternity Hospital in Quito, Ecuador

BLOOD PRODUCT UTILIZATION

Blood Product Utilization

study group KMC: 46 of 183

control group CMC: 28 of 104

Rate of wt. gain less in Preterms due to anemia requiring blood transfusion & later put on oral iron therapy at 8 wks age

Weight in gms	KMC (n=183)		CMC (n=104)		Total (n=287)	
	Male	Female	Male	Female	Male	Female
≤ 1000	1	1	0	0	1	1
1001-1500	13	9	1	3	14	12
1501-2000	9	13	11	13	20	26
Total	23	23	12	16	35	39
Grand Total	46 (2	5.13%)	28 (2	6.92%)	74 (2	5.78%)

G.Kirsten Et H. Weyers2006[21]: KMC < CMC

MORBIDITY / MORTALITY PROFILE

Follow up at \ge 3 months is a surrogate marker of overall mortality/morbidity which is an evidence of effectiveness & safety of KMC over CMC **199 of total 287 babies (69.33%)**

KMC: 145 of 183 (79.23%) **CMC:** 54 of 104 (51.9%)

Babies had adequate weight gain & neurodevelopment was normal.

	≤ 1000		1001 - 1500		1501 - 2000		Total
Sex / Birth weight	KMC (3)	CMC (0)	KMC (68)	CMC (8)	KMC (112)	CMC (96)	(n = 287)
Male	1	0	26	2	46	27	102
Female	1	0	25	4	46	21	97
Total	2	0	51	6	92	48	199
Grand Total	2	2	5	7	14	40	(69%)

Conde-Agudelo A et al[22]: involving 1362 infants, showed no difference in infant mortality, KMC associated with reduced risk of nosocomial infection at 41 weeks CGA, OR 0.49, CI 0.25 – 0.93; wt. gain: KMC > CMC

Sloan et al[20]: mortality same in KMC & CMC most deaths occurred during the stabilization period before randomization

Priya JJ[7]: involving 30 LBW babies showed a marked reduction of morbidity and mortality in KMC as compared to CMC

BREAST MILK FEEDING RATES

All the babies (100%) were on breast feeding at discharge

Follow up at ≥3 months: 199 of total 287 babies (69.33%)

KMC: 145 of 183 (79.23%) **CMC:** 54 of 104 (51.9%)

Sloan et al 1994[20]: similar observation Charpak et al 1994[23], 1997[7] : KMC more than CMC 1 month 93% vs. 78% 3 months 82% vs. 75% 6 months 70% vs. 37% 1 year 41% vs. 23%

BREAST MILK FEEDING RATES

Cattaneo et al 1998[12]: study group KMC 88%; control group CMC 70%, Hurst et al[24]: KMC increases milk production, Ramanathan et al 2001[3]: KMC doubles breast feeding rates.

HEAD GROWTH (OFC)

Follow up at ≥ 3 months: 199 of total 287 babies(69.33%) KMC: 145 of 183 (79.23%) CMC: 54 of 104 (51.9%)

Head growth i.e. reflection of brain growth monitored by measuring OFC at birth (3 days age) and on follow up at 3 months, values within normal range

Wt. (Grams)	At Birth (3 days)	At 3 months
≤1000	26.2 cm	33.7 cm
1001 - 1500	28.5 cm	34.4 cm
1501 - 2000	31.6 cm	37.3 cm

OFC in different weight categories

NEURODEVELOPMENT

INFANIB Scale was used for neurodevelopment evaluation of babies on follow up at 3 months of age. Following signs were assessed and found overall normal

- 1) Hands open / close
- 2) Scarf sign
- 3) Heel to ear
- 4) Popliteal angle

Development assessment at **three** months of age in both study and control groups are comparable

Charpak et al 2001[25]: psychomotor development was similar in their study and control groups **Feldman et al 2002[26]:** study group infants showed more alertness, mean Psychomotor Developmental Index was higher than among control group (85.47 vs. 80.53)

1. Hands Open / Close

- Note the position of infant's hands.
 At birth hands closed some or all the time
 2 months closure of hands on stimulation.
 3 months hands normally open.
 4 months closed hands abnormal
- •Fisting / clenching of hands indicator of excessive extensor tone, abnormal at any time.

Fisting 2 months - Neuromotor abnormality

Hands open - Normal infant

Hands closed, neuromotor abnormality at 3.5 months

Normal Scarf Sign 0-3 months 0°-15°

Normal Scarf Sign 7-9 months 45° - 60°

2. Scarf sign

Normal: changes

3 monthly

Normal scarf sign 4-6 months 15°-45°

Normal Scarf sign 10-12 months $60^{\circ} - 85^{\circ}$

Abnormal Scarf sign, 0 - 3 months

Scarf sign

Abnormal

Progression from

Marked hypotonia

Abnormal Scarf sign 4 - 6 months

Abnormal Scarf sign 7 - 9 months to Spastic Tetraparesis

Abnormal Scarf sign 10 - 12 months

3) Heel to ear Normal Excellent Indicator of Hypertonia

Normal heel to ear 0 - 3 months, 100° - 90°

Normal heel to ear 4 -6 months, 90° - 60°

Normal heel to ear 7 - 9 months, 60° - 40 $^\circ$

Normal heel to ear 9 - 18 months 40° - 10°

Abnormal heel to ear 0 - 3 months

Abnormal heel to ear 4 - 6 months

Heel to ear

Abnormal

Abnormal heel to ear 10 -12 months

Abnormal heel to ear 10-12 months

Normal Popliteal angle 0 - 3 months

Normal popliteal angle 7 - 9 months

4) Popliteal angle

Normal

Normal popliteal angle 10 - 12 months

Abnormal popliteal angle 0 - 3 months

Abnormal popliteal angle 4 - 6 months

Abnormal popliteal angle 7 - 9 months Popliteal angle

Abnormal

Abnormal popliteal angle 12 months

KEY MESSAGE

WHAT IS ALREADY KNOWN ?

 KMC is the humane and physiological answer for comprehensive low cost care for LBW Infants.

KEY MESSAGE

"WHAT THIS STUDY ADDS?" KMC Ward

for patients of poor socio-economic status living in far flung remote areas with constraints on both means of travel and communication

HIGH RISK FOLLOW UP CLINIC

- Evaluation of ROP
- Evaluation of hearing assessment
- Screening for congenital hypothyroidism
- Monitoring growth & neurodevelopment

SPECIAL ACKNOWLEDGEMENTS

> Prof Orvar Finnstrom:

Professor Neonatology

University Hospital, Linkoping, Sweden: Initiating me in KMC

- Prof Rekha Udani: Hands on Training
- Prof Ruchi Nanawati: Training Manual
- > Prof Simin Irani: FBNC
- > Nursing Staff & Pediatric Residents
- > Nursing mothers & babies